Самодельный фонарик из светодиодной ленты и сдохшей батареи шуруповерта. Мощные светодиодные фонарики Делаем светодиодный фонарь

Светодиод - это полупроводниковое устройство, позволяющее преобразовывать электрический ток в световое излучение. Одна светодиодная лампа на 220 вольт позволяет сэкономить огромное количество электроэнергии. Экономия выходит в 2 раза больше лампы дневного света и в 10 раз, чем лампа накаливания. Если использовать для изготовления такой лампы детали от перегоревшего светильника, можно значительно снизить расходы. Светодиодную лампу своими руками можно собрать достаточно просто. Но не стоит забывать, что для этого необходимо иметь соответствующую квалификацию, так как придётся работать с высоким напряжением.

Преимущества светодиодов

В наше время можно найти огромное количество видов люстр со светодиодными лампами в магазинах. У них есть разные преимущества и недостатки. Модернизация энергосберегающих ламп позволяет воспользоваться всеми преимуществами люминесцентного света. Это касается самых распространённых светильников с цоколем E 27. А старые представители этого семейства были наделены неприятным мерцанием. Люминесцентные источники света - это действительно настоящее чудо. По сравнению с ними лампы накаливания очень сильно сдают свои позиции. Их высокое потребление энергии и низкую светоотдачу не перекрывает высокий индекс цветопередачи.

Долговечность - это главный их плюс. Механически он прочен и надёжен . Известно, что его срок работы может достигать до 100 000 часов. А также они считаются экологически чистыми источниками света в отличие от люминесцентных ламп, которые, в свою очередь, содержат ртуть. Но как известно, у ламп дневного света есть некоторые недостатки:

  • Пары, которые содержатся в трубках довольно ядовитые.
  • Из-за частого включения-выключения быстро могут выйти из строя.
  • Сама конструкция требует определённой утилизации.

Лампу на светодиодах можно считать второй революцией в области освещения. Она работает в 5−10 раз дольше, более экономично и не требует никакой особой утилизации. Хотя есть несущественный недостаток - она намного дороже.

Для того чтобы убрать этот маленький минус и обернуть его в хороший плюс, можно соорудить лампу из светодиодной ленты своими руками. Таким способом можно снизить стоимость источника света. Она будет намного ниже, чем у люминесцентных аналогов. А также такая лампа будет обладать рядом преимуществ:

  • Срок службы лампы составит рекордные 100 000 часов, но только при правильной сборке.
  • Стоимость самодельного устройства не выше, чем у люминесцентной лампы.
  • Эффективность ватт/люмен намного превосходит все аналоги.

Но также имеется один недостаток - на это изделие отсутствует гарантия. Она должна компенсироваться мастерством электрика и точным соблюдением инструкции.

Самодельные светильники

Для создания лампы своими руками имеется огромное количество способов. Использование старого цоколя от прогоревшей люминесцентной лампы является самым распространённым методом. Такие ресурсы имеются в каждом доме, поэтому с их поиском проблем не будет. А также понадобится:

В некоторых схемах может и не пригодиться один или два элемента из этого списка. Однако в других могут, наоборот, понадобится новые звенья цепи, например: драйвера или электролиты. В каждом конкретном случае нужно индивидуально составлять список необходимых материалов .

Как сделать светодиодный светильник своими руками

Чтобы приступить к монтажу лампы, необходимо подготовить две испорченные люминесцентные лампы с мощностью в 13 Вт и длиной полметра. Нет никакого смысла покупать новые, лучше всего найти неработающие старые. Но их обязательно нужно проверить на наличие трещин и сколов.

Далее в магазине необходимо приобрести светодиодную ленту. К этому нужно подойти ответственно, так как выбор очень велик. Лучше всего подойдут ленты с естественным или чисто-белым светом. Так как они не изменяют оттенки окружающих предметов и являются сверхяркими. Обычно в этих лентах светодиоды собраны в группы по три штуки. Мощность одной группы - 14 Вт, а напряжение - 12 вольт на метровую ленту.

После чего нужно произвести разборку люминесцентных ламп на составные части. Необходимо действовать очень осторожно - не повредить провода и не разбить трубку, так как в этом случае вырвутся ядовитые пары. Все извлечённые внутренности не стоит выбрасывать. Они могут пригодиться в дальнейшем. Далее необходимо разрезать ленту на участки по 3 диода. После этого стоит достать дорогие и ненужные преобразователи. Большие крепкие ножницы или кусачки лучше всего подойдут для того, чтобы разрезать ленту.

В итоге должно оказаться 22 группы по 3 led или 66 светодиодов, которые должны быть подключены параллельно по всей длине. Чтобы преобразовать переменный ток в постоянный, необходимо стандартное напряжение 220 вольт увеличить до 250 в электрической сети. Это связано с процессом выпрямления. Следующим шагом будет выяснение количества секций светодиодов. Для этого необходимо разделить 250 вольт на 12 вольт (напряжение для 1 группы по 3 шт.). Получив в итоге 20,8 (3), нужно округлить в большую сторону - получится 21 группа. Лучше всего добавить ещё одну группу, так как общее количество светодиодов будет делиться на две лампы. А делить чётное количество намного легче.

Далее понадобится выпрямитель постоянного тока, который можно найти в извлечённых внутренностях люминесцентной лампы. При помощи кусачек извлекаем конденсатор из общей цепи преобразователя. Произвести это действие довольно легко, поскольку он находится отдельно от диодов, стоит только отломить плату.

Воспользовавшись суперклеем и пайкой, необходимо собрать всю конструкцию. Не стоит пытаться уместить все 22 секции в один светильник. Как говорилось выше, нужно найти 2 полуметровые лампы, так как разместить все светодиоды в одной просто невозможно. Не нужно рассчитывать на самоклеящийся слой, который располагается с обратной стороны ленты. Он не сможет прослужить долгое время. Поэтому для закрепления светодиодов лучше воспользоваться суперклеем или жидкими гвоздями.

Подводя итоги, можно разобрать все достоинства собранного изделия. Количество света у получившихся ламп в 1,5 раза больше, чем у аналогов. А вот потребляемая мощность намного меньше, чем у ламп дневного света. Срок службы этого источника света будет примерно в 10 раз больше. И также одно из преимуществ - это направленность света. Он направлен строго вниз и не имеет возможности рассеиваться. Поэтому лучше всего будет использоваться у рабочего стола или на кухне. Однако испускаемый свет не отличается высокой яркостью, но имеет низкое энергопотребление.

Постоянное использование лампы во включённом состоянии за год съест всего 4 кВт энергии. Стоимость потребляемой электроэнергии в год можно сопоставить со стоимостью билета в городском транспорте. Поэтому такие источники света часто используют там, где требуется постоянная подсветка, к примеру:

  • Улица.
  • Коридор.
  • Подсобка.
  • Аварийное освещение.

Простая лампочка из светодиодов

Есть другой способ создания светильника. Настольная лампа, люстра или фонарь нуждаются в цоколе E14 или E27. Соответственно, используемые диоды и схема будут отличаться. Сейчас распространены компактные люминесцентные лампы. Для монтажа понадобится один перегоревший патрон, а также изменённый список материалов. Необходимо:

Перейдём к созданию светодиодного модуля своими руками. Для начала надо произвести разборку старого светильника. В люминесцентных лампах цоколь крепится к пластинке с трубками и закрепляется при помощи защёлок. Цоколь можно отсоединить достаточно просто. Необходимо, найдя места с защёлками, поддеть их отвёрткой. Делать нужно всё довольно осторожно, чтобы не повредить трубки. При вскрытии необходимо следить, чтобы электропроводка, которая ведёт к цоколю, осталась цела.

Из верхней части с газоразрядными трубками нужно изготовить пластинку, к которой будут прикрепляться светодиоды. Для этого нужно отсоединить трубки лампочки . В оставшейся пластинке имеется 6 отверстий. Чтобы светодиоды плотно крепились в ней, нужно сделать картонное или пластмассовое «дно», которое также будет изолировать светодиоды. Использовать нужно светодиоды НК6, они многокристальные (по 6 кристаллов в диоде) с параллельным подключением.

Из-за этого источник света получается сверхярким при минимальной мощности. В крышке нужно сделать по 2 отверстия для каждого светодиода. Прокалывать отверстия стоит аккуратно и равномерно, чтобы их расположение соответствовало друг другу и задуманной схеме. Если использовать в качестве «дна» кусок пластмассы, то светодиоды будут закрепляться прочно. А вот в случае применения куска картона потребуется склеить основание со светодиодами при помощи суперклея или жидких гвоздей.

Так как лампочка будет использоваться в сети с напряжением 220 вольт, то потребуется драйвер RLD2−1. К нему можно подсоединить 3 диода по 1 ватту. Для этой лампы ушло 6 светодиодов с мощностью по 0,5 ватт. Из этого следует, что схема соединения будет образовываться из двух последовательно соединённых частей из трёх параллельно подсоединённых светодиодов.

Перед тем как приступить к сборке, нужно изолировать драйвер и плату друг от друга. Для этого можно воспользоваться кусочком картона или пластика. Это позволит избежать короткого замыкания в будущем. Не стоит беспокоиться о перегреве, так как лампа совсем не греется. Осталось собрать конструкцию и испытать её в деле. Из-за белого света лампочка кажется значительно светлее. Световой поток собранного светильника равняется 100−120 люменам. Этого может хватить для освещения маленького помещения (коридора или подсобки).

Виды светильников

Светильники на светодиодах можно разделить на две группы: индикаторные (светодиодные) - используются как индикаторы, поскольку они являются маломощными и неяркими. Зелёные лампочки на маршрутизаторе - это индикаторные светодиоды. Такие диоды есть и на телевизоре. Их применение довольно разнообразно. Например:

  • Подсветка панели автомобиля.
  • Различные электронные приборы.
  • Подсветка компьютерных дисплеев.

Их цвета имеют огромное разнообразие: жёлтый, зелёный, красный, фиолетовый, голубой, белый и даже ультрафиолетовый. Стоит запомнить, что цвет светодиода не зависит от цвета пластика. Он определяется от типа полупроводникового материала, из которого он сделан. В большинстве случаев, чтобы узнать цвет, нужно включить его, так как они выполнены из бесцветного пластика.

Осветительная конструкция используется для освещения чего-либо. Имеет отличия по своей мощности и яркости. А также отличается очень сниженной ценой, поэтому нередко применяется в бытовом и промышленном освещении. Такой вид освещения считается производительным, экологическим и дешёвым. На сегодняшний день уровень развития технологии может позволить производить лампы с большим уровнем светоотдачи на 1 Ватт.

Фонарик – это необходимая вещь при поездках на природу или за город на дачу. Ночью на приусадебном участке или возле палатки только он создаст луч света в темном царстве. Но и в городской квартире без него иногда просто не обойтись. Как правило, достать что-либо маленькое и укатившееся под кровать или диван без фонарика сложно. И хотя в наше время есть устройства, которые мультифункциональны и могут быть источником света, некоторые из наших читателей наверняка захотят узнать, как сделать фонарик своими руками. О том, как сделать маленький прибор из подручных предметов, будет рассказано далее.

Классика формы

Наиболее удобной конструкцией, которая в принципе уже многие годы остается неизменной для фонариков, является конструкция, содержащая в себе:

  • цилиндрический корпус с такими же по форме батарейками;
  • рефлектор с лампочкой с одного конца корпуса;
  • съемную крышку с другого конца корпуса.

И эту конструкцию можно получить, используя ненужные предметы обихода. Если изготовить фонарь своими руками, красоты форм как у промышленного образца, конечно же, не будет. Но он будет функциональным и от работающей самоделки будет получено много положительных эмоций.

Итак, основной проблемой, которую на первый взгляд сложно решить, является рефлектор. Но это только кажется сложным. На самом деле нас окружает много предметов, которые могут стать заготовкой для целого ряда отражателей разных размеров. Это обычные пластиковые бутылки. Их внутренняя поверхность вблизи горлышка по форме весьма близка к той, которую имеет отражатель, сделанный на заводе. А крышка словно создана для крепления в ней светодиода, который сегодня является наилучшим источником света. Он ярче и экономичней миниатюрной лампочки.

Мастерим рефлектор

То, что можно не найти трубку подходящих размеров для изготовления корпуса, – не проблема. Его можно склеить из отдельных деталей. Например, из ненужных одноразовых шариковых авторучек. Для подпружинивания контактов можно применить спираль, которая используется для переплетов страниц, и контакты изготовить из тонкой листовой жести, сырьем для которой станет жестяная банка. Поэтому начинаем с выбора пластиковой бутылки желаемых размеров и подбора остальных элементов. Чем меньше будет бутылка, тем более жестким и крепким получится отражатель. Крепление деталей при сборке проще всего сделать на основе строительного герметика.


Итак, приступаем к изготовлению фонарика своими руками. От бутылки острым ножом отрезаем горлышко и параболическую часть корпуса и подравниваем края ножницами.



Для эффективного отражения используем фольгу, в которую заворачиваются шоколадные плитки. Если ее размеров не хватит, можно вырезать заготовку большего размера из рулона фольги, предназначенной для выпечки продуктов. Чтобы фольга держалась на поверхности, наносим тонкий слой герметика. Затем прижимаем и разравниваем по нему фольгу. Если она сморщится, это не беда. Главное, чтобы не было вздутий, и она повторяла форму основы.

Прижимаем фольгу пальцами и, разглаживая неровности, формируем максимально ровную поверхность. Фольгу по краям подравниваем ножницами вровень с пластиковой основой. По контуру горлышка делаем вырез ножом для светодиода, который впоследствии будет установлен в этом месте на панельке.





Ее изготавливаем из донышка бутылочной крышки, отрезав острым ножом края с резьбой и при необходимости подравняв их ножницами. Затем, проделав шилом или острием ножа в панельке два отверстия, продеваем через них ножки светодиода, прижав его основание к ней. Для правильной установки светодиодной лампы в центре крышки надо правильно по расположению ножек в основании светодиода выбрать расстояние между отверстиями.




Выводы светодиода отгибаем в стороны до упора о края панельки. К ним скруткой крепим проводники. Если скрутка получается ненадежной из-за свойств жил провода или по иным причинам, применяется пайка. Выводы после прикрепления проводов подгибаются вдоль панельки. Работоспособность полученной детали рекомендуется проверить батарейками, применяемыми в фонарике.




Затем из жестяного листа вырезаем контактную площадку для батарейки, которая упирается в панельку со светодиодом. Скруткой или пайкой соединяем площадку – клемму с более коротким проводом. Клемму крепим к пружинке, которую в свою очередь крепим к панельке. Для скрепления элементов применяем герметик.


Затем панельку со светодиодом вклеиваем в отражатель.


Донышко и футляр с батарейками

Противоположная рефлектору деталь корпуса фонарика тоже изготовлена из части бутылки с горлышком. Но только из самого горлышка с крышкой. К внутренней стенке его приклеивается клемма, сделанная из жестяного листа. К ней также крепится провод. Этот провод и второй провод от светодиода будут использованы для управления фонариком. Клемма контактирует с батарейкой, будучи прижатой крышкой, которая навинчивается на горлышко.





Две главные детали готовы. Теперь надо сделать футляр для батареек. Для этого используем высохшие и поэтому уже не нужные фломастеры. Оставляем от них только корпус, который укорачиваем по длине и по концам подрезаем вдоль по оси, делая два выступа для приклеивания. Перед отрезанием делаем маркером пометки, прикладывая корпус фломастера к приклеиваемым деталям.




На выступы наносим клей и приклеиваем их соответственно к рефлектору и тыльной части.




Затем из жестяного листа вырезаем детали выключателя. Монтируем к ним провода и приклеиваем детали к корпусу.




Вставляем в фонарик батарейки и пользуемся им. Это, конечно, не фонарь заводского изготовления с качественным отражателем и дальним светом. Но зато он изготовлен своими руками, это ваше собственное изделие, которое дает хорошее ближнее освещение и доставляет большое удовольствие, а его за деньги не купишь. Теперь вы получили наглядное представление о том, как запросто можно сделать фонарь самому.



Готовый фонарик и свет от него

Светодиодные ленты сейчас применяются повсеместно и порой попадают в руки отрезки таких лент, ленты со сгоревшими местами светодиодами. А целых, рабочих светодиодов полным-полно и жалко выбрасывать такое добро, хочется где-то их применить. Так же попадаются различные аккумуляторные элементы. В частности мы рассмотрим элементы "сдохшей" Ni-Cd (никель-кадмиевой) батареи. Из всего этого хлама можно соорудить добротный самодельный фонарь, с большой вероятностью лучше заводского.

Светодиодная лента, как проверить

Как правило, светодиодные ленты рассчитаны на напряжение 12 вольт и состоят из множества независимых сегментов, соединенных параллельно в ленту. Это означает, что если выходит из строя какой-то элемент, работоспособность теряет только соответствующий элемент, остальные сегменты светодиодной ленты продолжают работать.

Собственно, нужно лишь подать питающее напряжение 12 вольт на специальные точки-контакты, которые имеются на каждом кусочке ленты. При этом, напряжение поступит на все сегменты ленты и станет ясно, где неработающие участки.

Каждый сегмент состоит из 3-х светодиодов и токоограничивающего резистора, включенных последовательно. Если разделить 12 вольт на 3 (количество светодиодов), то получим 4 вольта на светодиод. Это напряжение питания одного светодиода - 4 вольта. Подчеркну, так как всю цепь ограничивает резистор, то диоду вполне хватит напряжения 3,5 вольта. Зная это напряжение, мы можем проверить непосредственно любой светодиод на ленте по отдельности. Сделать это можно, коснувшись выводов светодиода щупами, подключенными к блоку питания с напряжением 3,5 вольта.

Для этих целей можно использовать лабораторный, регулируемый блок питания или зарядное устройство мобильного телефона. Зарядное устройство не рекомендуется подключать напрямую к светодиоду, ибо его напряжение около 5 вольт и теоретически светодиод может сгореть от большого тока. Чтобы этого не произошло, подключать зарядное устройство нужно через резистор 100 Ом, так мы ограничим ток.

Я сделал себе такое простое устройство - зарядка от мобильного с крокодилами вместо штекера. Очень удобна для включения сотовых без батареи, подзарядки батарей вместо "лягушки" и прочего. Для проверки светодиодов тоже сойдет.

Для светодиода важна полярность напряжения, если перепутать плюс с минусом, диод не загорится. Это не проблема, на ленте обычно указанна полярность каждого светодиода, если нет, то нужно пробовать и так и так. От перепутанных плюсов или минусов диод не испортится.


Лампа из светодиодов

Для фонарика необходимо изготовить светоизлучающий узел, лампу. Собственно, нужно светодиоды с ленты демонтировать и сгруппировать на свой вкус и цвет, по количеству, яркости и питающему напряжению.

Для снятия с ленты я использовал концелярский нож, акуратно срезая светодиоды прямо с кусочками токопроводящих жил ленты. Пробовал выпаивать, но что-то у меня плохо это удавалось. Наковыряв штук 30-40, я остановился, для фонарика и прочих поделок более чем достаточно.

Соединять светодиоды следует по простому правилу: 4 вольта на 1 или несколько запараллеленных диодов. То есть, если сборка будет запитываться от источника не более 5 вольт, сколько бы не было светодиодов, их нужно спаивать параллельно. Если же планируется питать сборку от 12 вольт - нужно сруппировать 3 последовательных сегмента с равным количеством диодов в каждом. Вот например сборка, которую я спаял из 24 светодиодов, разделив их на 3 последовательные секции по 8 штук. Рассчитана она на 12 вольт.

Каждая из трех секций этого элемента рассчитана на напряжение около 4-х вольт. Секции соединены последовательно, поэтому вся сборка питается от 12 вольт.

Кто-то пишет, что светодиоды не следует включать в параллель без индивидуального ограничивающего резистора. Может это и правильно, но я не ориентируюсь на такие мелочи. Для продолжительного срока службы, на мой взгляд, важнее подобрать токоограничительный резистор для всего элемента и подбирать его следует не измеряя ток, а щупая работающие светодиоды на предмет нагрева. Но об этом позже.

Я решил делать фонарь, работающий от 3-х никель-кадмиевых элементов из отработавшей батареи шуруповерта. Напряжение каждого элемента 1.2 вольта, следовательно 3 элемента, соединенных последовательно, дают 3.6 вольт. На это напряжение и будем ориентироваться.

Подключив 3 аккумуляторных элемента к 8-ми параллельным диодам, я измерил ток - около 180 миллиампер. Было решено делать светоизлучающий элемент из 8 светодиодов, как раз он удачно поместится в отражатель от галогеновой, точечной лампы.

В качестве основания я взял кусочек фольгированного стеклотекстолита примерно 1смХ1см, на него поместится 8 светодиодов в два ряда. В фольге прорезал 2 разделяющих полосы - средний контакт будет "-", два крайних будут "+".

Для пайки таких мелких деталей моего 15-ваттного паяльника многовато, точнее слишком большое жало. Можно сделать жало для пайки SMD-компонентов из куска электромонтажного провода 2.5мм. Чтобы новое жало держалось в большом отверстии нагревателя, можно согнуть проволоку пополам или добавить дополнительные кусочки проволоки в большое отверстие.


Основание залуживается припоем с канифолью и светодиоды впаиваются с соблюдением полярности. К средней полосе припаиваются катоды ("-"), а к крайним аноды ("+"). Припаиваются соединительные провода, крайние полосы соединяются перемычкой.

Нужно проверить спаянную конструкцию, подключив ее к источнику 3.5-4 вольта или через резистор к зарядному устройству телефона. Не забываем про полярность включения. Остается придумать отражатель фонаря, я взял отражатель от галогеновой лампы. Светоэлемент нужно надежно зафиксировать в отражателе, например клеем.

К сожалению, фото не может передать яркости свечения собранной конструкции, от себя скажу: слепит весьма не плохо!

Аккумулятор

Для питания фонаря я решил использовать аккумуляторные элементы из "сдохшей" батареи шуруповерта. Достал из корпуса все 10 элементов. Шуруповерт работал от этой батареи 5-10 минут и садился, по моей версии, для работы фонаря вполне могут подойти элементы этой батареи. Ведь для фонаря нужны токи, гораздо меньшие, чем для шуруповерта.

Я сразу отцепил три элемента от общей связки, они как раз будут давать напряжение 3.6 вольт.

Я замерил напряжение на каждом элементе по отдельности - на всех было около 1,1 В, только одна показывала 0. Видимо это неисправная банка, ее в мусорку. Остальные еще послужат. Для моей светодиодной сборки будет достаточно трех банок.

Проштудировав интернет, я вывел для себя важную информацию о никель-кадмиевых аккумуляторах: номинальное напряжение каждого элемента 1.2 вольт, заряжать банку следует до напряжения 1.4 вольт (напряжение на банке без нагрузки), разряжать следует не ниже 0.9 вольт - если составленно несколько элементов последовательно, то не ниже 1 вольта на элемент. Заряжать можно током десятой доли емкости (в моем случае 1.2А/ч=0.12А), но по факту можно и большим (шуруповерт заряжается не более часа, значит токи зарядки не менее 1.2А). Для тренировки/востановления полезно разрядить аккумулятор до 1 В какой-либо нагрузкой и зарядить заново, так несколько раз. Заодно оценить примерное время работы фонаря.

Итак, для трех элементов, соединенных последовательно, параметры таковы: напряжение зарядки 1.4X3=4.2 вольта, номинальное напряжение 1.2X3=3.6 вольт, ток заряда - какой даст зарядное мобильного со стабилизатором моего изготовления.

Единственный не ясный момент: как мерять минимальное напряжение на разряженных аккумуляторах. До подключения моего светильника на трех элементах было напряжение 3.5 вольт, при подключении - 2.8 вольт, напряжение быстро восстанавливается при отключении опять до 3.5 вольт. Я решил так: на нагрузке напряжение не должно падать ниже 2.7 вольт (0.9 В на элемент), без нагрузки желательно чтобы было 3 вольта (1 В на элемент). Однако, разряжать придется долго, чем дольше разряжаешь, тем стабильнее напряжение, перестает быстро падать на зажженых светодиодах!

Свои и без того разряженные аккумуляторы я разряжал несколько часов, иногда отключая лампу на несколько минут. В итоге получилось 2.71 В с подключенной лампой и 3.45 В без нагрузки, разряжать дальше не рискнул. Замечу, светодиоды продолжали светить, хоть и тускловато.

Зарядное устройство для никель-кадмиевых аккумуляторов

Теперь следует соорудить зарядное устройство для фонарика. Основное требование - напряжение на выходе не должно превышать 4.2 В.

Если планируется питать зарядное от какого-либо источника более 6 вольт - актуальна простая схема на КР142ЕН12А, это очень распространенная микросхема для регулируемого, стабилизированного питания. Зарубежный аналог LM317. Вот схема зарядного устройства на этой микросхеме:

Но эта схема не вписывалась в мою задумку - универсальность и максимальное удобство для зарядки. Ведь для этого устройства понадобится делать трансформатор с выпрямителем или использовать готовый блок питания. Я решил сделать возможность заряда аккумуляторов от зарядного устройства мобильника и USB порта компьютера. Для реализации потребуется схемка посложнее:

Полевой транзистор для этой схемы можно взять с неисправной материнской платы и другой компьютерной периферии, я срезал его со старой видеокарты. Таких транзисторов полно на материнке возле процессора и не только. Чтобы быть уверенным в своем выборе, нужно вбить номер транзистора в поиск и убедиться по даташитам, что это полевой с N-каналом.

В качестве стабилитрона я взял микросхему TL431, она встречается практически в каждом заряднике от мобилы или в других импульсных блоках питания. Выводы этой микросхемы нужно соединить как на рисунке:

Я собрал схему на кусочке текстолита, для подключения предусмотрел сразу гнездо USB. В дополнение к схеме впаял один светодиод возле гнезда, для индикации зарядки (что на USB-порт поступает напряжение).

Немного пояснений к схеме Так как зарядная схема будет все время присоединена к батарее, диод VD2 необходим, чтобы батарея не разряжалась через элементы стабилизатора. Подбором R4 нужно добиться на указанной контрольной точке напряжения 4.4 В, мерять нужно при отцепленной батарее, 0.2 вольта - это запас на просадку. Да и вообще, 4.4 В не выходит за пределы рекомендуемого напряжения для трех аккумуляторных банок.

Схему зарядного можно существенно упростить, однако заряжать придется только от источника 5 В (USB-порт компьютера удовлетворяет этому требовванию), если зарядное телефона выдает большее напряжение - использовать его нельзя. По упрощенной схеме, теоретически, аккумуляторы могут перезаряжаться, на практике же так заряжают аккумуляторы во многих заводских изделиях.

Ограничение тока светодиодов

Чтобы исключить перегрев светодиодов, а заодно уменьшить потребляемый ток от батареи, нужно подобрать токоограничительный резистор. Я подбирал его без каких-либо приборов, на ощупь оценивая нагрев и на глаз контролировал яркость свечения. Подбор нужно производить на заряженной батарее, следует найти оптимальное значение между нагревом и яркостью. У меня получился резистор 5.1 Ом.

Время работы

Я производил несколько зарядок-разрядок и получил следующие результаты: время зарядки - 7-8 часов, при непрерывно включенной лампе аккумулятор разряжается до 2.7 В примерно за 5 часов. Однако, при выключении на несколько минут, батарея немного восстанавливает заряд и может проработать еще полчаса, и так несколько раз. Это означает, что фонарик достаточно долго проработает, если светить не все время, а на практике так и выходит. Даже если пользоваться практически не выключая, на пару ночей должно хватить.

Конечно, ожидалось более продолжительное время работы без перерыва, но не стоит забывать, что аккумуляторы были взяты из "сдохшей" батареи шуруповерта.

Корпус для фонаря

Получившееся устройство нужно куда-то поместить, сделать какой-то удобный корпус.

Хотел расположить аккумуляторы со светодиодным фонарем в полипропиленовой водопроводной трубе, но банки не лезли даже в 32 мм трубу, ведь внутренний диаметр трубы намного меньше. В итоге остановился на соединительных муфтах для полипропилена 32 мм. Взял 4 соединительных муфты и 1 заглушку, склеил их вместе клеем.

Склеив все в одну конструкцию, получился весьма массивный фонарь, диаметром около 4 см. Если использовать какую-либо другую трубу, то можно существенно уменьшить размеры фонаря.

Обмотав все это дело изолентой для лучшего вида, мы получили вот такой фонарь:

Послесловие

В заключение хочется сказать несколько слов о получившемся обзоре. Не каждый USB порт компьютера может заряжать этот фонарь, все зависит от его нагрузочной способности, 0.5 А должно вполне хватить. Для сравнения: сотовые телефоны при подключении к некоторым компьютерам могут показывать зарядку, однако на самом деле никакой зарядки нет. Другими словами, если компьютер заряжает телефон, то и фонарь тоже будет заряжаться.

Схему на полевом транзисторе можно использовать для заряда от USB 1-го или 2-х аккумуляторных элементов, нужно лишь подстроить напряжение соответственно.

Как-то заказал с Китая SMD светодиоды 5630 для будущего робота, которого уже собираю пол года, и вот диодов пришло много, целая бухта, а излишки надо куда-то использовать 🙂 Решил собрать подсветку для двери на входе в дом. Начав экспериментировать, выяснилось, что можно изготовить неплохие фонарики для подсветки в различных местах дома, и что самое главное – все можно сделать из подручных материалов! 🙂

Первым делом потребуется собрать необходимые материалы, а именно:

  1. Крышка от кефира или молока – основа корпуса фонарика
  2. Светодиоды SMD 5630 или 5730
  3. Резисторы 3,3 – 12 Ом (зависит от источника питания)
  4. Монтажная или печатная плата
  5. Провода
  6. Оргстекло – в качестве крышки корпуса
  7. Аккумулятор 3,7 Вольт или источник питания 5 Вольт

В данной статье я использовал светодиоды SMD 5630 с рабочим напряжением 3,3 Вольта и током 150 миллиампер. Источник питания – аккумулятор от сотового телефона емкостью 5000 МАч и напряжением 3,8 Вольт. При таком напряжении нужны резисторы 3,3 Ома, но за неимением оных пришлось использовать 2,2 Ома.


При разряде аккумулятора его напряжения падает и в целом не превышает 3,6 вольт, что вполне соответствует номиналам сопротивлений в 2,2 Ома.

Для крепления светодиодов и резисторов подходит небольшой кусочек монтажной платы.


Припаиваем диоды, резисторы и питающие провода согласно схеме.


На схеме представлены номиналы резисторов для 3,7 и 5 Вольт. Для более яркого свечения можно добавить дополнительные светодиоды – 3, 4 и более штук, в зависимости от размера крышки-корпуса и требуемой яркости.


После этого следует проверить работоспособность схемы, подав питание на соответствующие провода.


Теперь можно зафиксировать плату в крышке при помощи термоклея.


Провода пропускаем через боковое отверстие крышки, также зафиксировав их при помощи термоклея.


Теперь крепим прозрачную крышку из оргстекла при помощи секундного супер клея.


Крышку я вырезал при помощи коронки 44 мм и шуруповерта из листа оргстекла.


Наносим клей по краям стекляшки. Можно точками, а можно и сплошной линией.


Плотно прижимаем корпус фонарика и держим несколько секунд.


Крышка на месте. Фонарик почти готов.


Отверстие в центре фонарика, полученное в результате высверливания круга из оргстекла, можно закрыть при помощи мебельной заглушки.


Корпус фонарика готов. При желании, можно затереть наждачной бумагой оргстекло для получения матовой поверхности. На фото ниже слева фонарик с прозрачным стеклом, а справа – с матовым, полученным при помощи наждачной бумаги.


Подключим оба фонарика к источнику питания.


Вот так выглядит готовое изделие.


Яркости таких фонарей хватает чтобы осветить целую комнату.


Для примера – можно сделать подсветку на книжной полке.


Или на полке с одеждой в шкафу.

Практически любому рыболову, охотнику, садоводу-любителю довольно часто приходилось сталкиваться с необходимостью перемещения или выполнения различной работы в темное время суток. Компактные карманные фонарики не всегда могут в полной мере «прорезать темноту»… Представляю вашему вниманию это 100 Вт светодиодное чудо, которое можно изготовить своими руками .

Для начала порывшись в «закромах родины» нашел радиатор для охлаждения процессора. В идеале было бы неплохо закрепить светодиод на элементе Пельтье (для более эффективного охлаждения). После чего пошёл в местный строймаг и приобрел необходимы для самоделки детали.

Попутно возник вопрос относительно будущего корпуса фонаря… «Изобретать велосипед» смысла не было, поэтому решил взять готовый корпус от старого 6В фонаря

Шаг 1:

Первое, что нужно сделать – это собрать батарейный блок.

Шаг 2:

Устанавливаем светодиод и подключаем провода. Проводка монтировалась согласно схеме приведенной в видео.

Шаг 3: Подготавливаем корпус фонаря

Из-за того, что при работе источника света большой мощности, выделяется значительное количество тепла, необходимо вырезать в корпусе вентиляционные отверстия. Закроем их вентиляционными решётками.

Шаг 4: Тестовый запуск

Что еще почитать